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Theory and Design of Uniform and Composite

Electric Wave-filters

By OTTO J. ZOBEL

THE electric wave-filter, as regards its general transmission

characteristics and its extremely important role in communica-

tion systems, is well known. Its physical theory was discussed in

detail in the preceding number of this Journal by its inventor, G. A.

Campbell. In the present paper it is proposed to present systematic

general methods of wave-filter design, together with representative

designs, which have been developed in connection with the practical

utilization of this device in the plant of the Bell System.

First is considered a general theory of design combining physical

and analytical considerations which gives explicitly the structure

of a uniform type of wave-filter having any preassigned transmitting

and attenuating bands as well as desirable impedance and quite

arbitrary attenuation characteristics. Next, this theory is applied

to the design of a low-and-band pass wave-filter from which are

derived design formulae for all the practical uniform wave-filter struc-

tures in present use, belonging to the classes low pass, high pass,

low-and-high pass, and band pass. Then the subject of composite

wave-filters is taken up, these being non-uniform wave-filter networks
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obtained by combining sections of wave-filters having equivalent

characteristic impedances but different propagation constants.

Among others, a superior advantage of composite over uniform wave-

filters is shown to be their greater flexibility of design, as a result of

which composite wave-filters are often the only means of meeting

severe design requirements. Many of the methods here used are

found to have further application in general recurrent network design.

The ideal toward which wave-filter design is usually directed is a finite

network having any preassigned transmitting and attenuating bands,

zero attenuation and a terminal characteristic impedance equal to any

one preassigned constant resistance in all transmitting bands, and in-

finite attenuation throughout all attenuating ba?ids. Due to such an

(Ki)*Z

o

Fig. 1—Ladder Type Recurrent Network

impedance characteristic, at frequencies in the transmitting bands

there would be no loss of transmitted energy if the network were in-

serted between two resistances, a generator and a receiver, each having

a constant resistance of this same magnitude, approximately the case

of two transmission lines. The infinite attenuation of the network

to currents of all other frequencies would effectively prevent energy

transmission through it.

Practically, such an ideal has not been attained but the methods

developed here lead to designs which can approximate it rather

closely. No attempt will be made to give the construction of wave-

filter elements minimizing energy dissipation, as we shall be con-

cerned mainly with a determination of the magnitude and locations

of the elements in the network. It may be stated, however, that the

less dissipative the elements the more nearly will the ideal of free

transmitting bands be reached.

Part I. Theory of Design

The uniform recurrent network specifically considered in this design

method is the ladder type of Fig. 1 having identical series impedances
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2i and identical shunt impedances z>, each of which has a physically

realizable structure. For purposes of illustration, at the left end is

shown a mid-series section whose two series impedances -hzi are each

half a full series impedance element. On the right is a mid-shunt

section, its two shunt admittances -— each being half that of a full
2Z2

shunt admittance; its shunt impedances are therefore, 2z2 . Cor-

responding to these two mid-point terminations are the mid-series

and mid-shunt characteristic impedances Ki and K2 , respectively.

When any ladder type design has been obtained its mid-series

and mid-shunt sections, being respectively in the form of three star-

connected (T) and three delta-connected (II) impedances, may serve

as the basis of transformations by ordinary means to determine the

elements of other uniform types (such as the lattice type shown in

Fig. 6) having equivalent properties. Generally such equivalent

uniform types are not as economical as the ladder type either due to

difficulties of construction or a larger number of elements per section.

The theory of composite wave-filters is included in that of uniform

types as here presented and so does not require a separate treatment.

Fundamental Formula

The mathematical formulae upon which the design rests follows,

their derivation being given in Appendix I.

cosh r = l+i^ = l+§ 7
2

,

Ki = V*ift+i«! = vT+17*.

K,=
Zl22

Vzi22 + izf Vi+i72 AY

_r= 2Ki-Zi 2z2-K2

2K l -\-z i 2zi+Ki

(1)

in which

Zi, z2 = series and shunt impedances per section,

r =A -\-iB = propagation constant per section,

Ki, i^s™ mid-series and mid-shunt characteristic im-

pedances.

y=a+i0= fa
\z 2

and k = y/Zlz2 ,
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wherein y and k have the significance of being the propagation con-

stant and characteristic impedance of the corresponding smooth line,

i.e., a line having series and shunt impedances z x and z2 ,
respectively,

per unit length uniformly distributed along the line.

When Zi and z2 are dissimilar reactances, as in a non-dissipative

wave-filter, currents of frequencies within continuous frequency bands

can be transmitted without attenuation and the location of these bands

on the frequency scale may be found from the conditions which must

there be satisfied. As derived from the first equation of (1) the

latter are

A=0,
and R iii 2 ! (2)

cos.£ = l+J—

.

z 2

Since the cosine limits are ± 1 this shows that free transmission may

occur at all frequencies corresponding to impedance ratio values

satisfying the relation

- UL S" ifi. (3)

a result which may be stated as follows:

The transmitting bands in a ladder type wave-filter having series and

shunt impedances zx and z2 , respectively, include all frequencies at which

these impedances are of opposite signs and the absolute value of Z\ is not

greater than that of 4z2 . This statement is useful in roughly determin-

ing the relative positions of such bands on an impedance diagram

where Z\ and 4z2\have been plotted as functions of frequency.

In the attenuating bands corresponding to the remainder of the

frequency range we have for the non-dissipative case

and
COsh,4 = *(l+*|), (4)

sin B = 0,

the sign above being taken such as to make the right member positive.

While the above formulae contain the necessary relations for wave-

filter action they do not specify the physical structure of the reactance

network. Hence we need to combine with them certain properties

of physical reactances to arrive at a structure having desired char-

acteristics. In wave-filter design all resistances in the physical re-

actance elements, although being unavoidable in construction, are
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neglected as they produce but secondary effects. When allowed for

later their most pronounced effect is the introduction of small attenu-

ation in the transmitting bands.

Reactance Theorems

The properties of physical reactances which are to be utilized may be

stated in the following theorems:

1. The reactance of any non-dissipative reactance network always

has a positive slope with frequency, as well as abrupt changes from posi-

tive to negative infinity at anti-resonant frequencies, and may be repre-

sented identically (among others) either by a number of simple (series L
and C) resonant components in parallel, or simple (parallel L and C)

anti-resonant components in series.

2. To any non-dissipative reactance network there corresponds an

inverse reactance network which is so related that the product of their

impedances is a constant, independent of frequency.

The proofs of these theorems are given in Appendix I, where with

reactances which are known to be any series and parallel combina-

tions of inductances and capacities the method of induction is readily

applied. In the first theorem the simple component resonant at zero

frequency is a single inductance and the one at infinite frequency a

single capacity. Similarly the simple anti-resonant components cor-

responding to these limiting frequencies are single capacity and single

inductance, respectively. In the second theorem, if we have given

one reactance consisting of a number of simple anti-resonant com-

ponents, all in series, the inverse network may be made up of the

same number of simple resonant components all in parallel, each one

of the latter corresponding to a particular one of the former. More-

over, any pair of these corresponding components are resonant and

anti-resonant, respectively, at the same frequency and the ratio of

inductance in one to capacity in the other is equal to the constant

.product of the two total impedances.

Phase Constant Theorem

The phase constant will not play any part in the present theory of

design but it has this property: The phase constant in a wave-filter

always increases with frequency thruout each transmitting band. As

shown in Appendix I, this follows as a consequence of the positive

slope of reactances. Consideration of this theorem will later be

touched upon when discussing composite wave-filters.
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1. "Constant k" Wave-Filter Having Any Preassigned

Transmitting and Attenuating Bands

The "constant k" wave-filter belonging to any class 1 is defined as

that ladder type wave-filler whose product of series and shunt impedances,

and therefore characteristic impedance, k, of the corresponding smooth

line, is constant independent of frequency.

The reasons for seeking the "constant k" wave-filter of any class

are, briefly:

(1) Its physical structure is readily found which will give any

preassigned transmitting and attenuating bands.

(2) Each of its two mid-point characteristic impedances passes

thru the same values, different in the two cases, in all transmitting

bands.

(3) Its design is preliminary to and furnishes a logical basis for the

derivation of general wave-filters possessing desirable attenuation

and impedance characteristics.

Letting the two impedances of the "constant k" wave-filter be

denoted with extra suffixes as zlk and z2 t> we have seen that if there

is a relation between these impedances such that

Zik Z2k = k2 = Constant, (5)

the series and shunt impedances of the "constant k" wave-filter must be

inverse networks to each other. Only one of them, say zik , need then be

temporarily considered, the ratio —^-, becoming ( -^) which by (3)
4z2& \2k/

shows that free transmission occurs wherever the series impedance

passes with increasing frequency thru the values from Zi*= — ilk

to Zik = o, and Zik = o to Z\k= +i2&. At each critical frequency

separating a transmitting from an attenuating band Z\k has the

value Zik = ^iZk. By (4) an attenuating band includes a frequency

at which Z\k is anti-resonant. Hence, in a "constant k" wave-filter

the transmitting and attenuating bands include the frequencies at which

the series impedance is resonant and anti-resonant, respectively. The
1 The class of a wave-filter, as defined in the present paper, is determined by the

number of its transmitting bands and their general locations on the frequency scale;

the type by its general structure. Thus, the low-band-and-high pass class transmits

in a band including zero frequency, in one internal band, and in a band including

infinite frequency. A class is complementary to another if its transmitting and
attenuating bands correspond in order to the attenuating and transmitting bands,

respectively, of the other. One class is higher, or lower, than another if it has in

addition to those of the latter at least one more, or one less, transmitting or attenu-

ating band.
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critical frequencies separating these bands are the frequencies at which

the series impedance equals ± i2k.

With these known facts and the properties of reactance networks, the

determination of the physical structure and design of any " constant

k " wave-filter is a relatively simple matter. At the series-resonant

frequency of any transmitting band both characteristic impedances

K\k and K2k, using the same notation as above, have by (1) the

value k. This indicates that if k has been chosen equal to the im-

pedance of the line (assumed as a constant resistance) with which

the wave-filter is to be associated there will be no impedance irregu-

larity at the junction of the mid-terminated wave-filter and the line

for any of these series-resonant frequencies. We shall put, therefore,

k = \ZzikZ2k = Nlea.n Line Resistance = R, (6)

which is assumed given, and R will have this meaning thruout the

remainder of this paper. At the critical frequencies we then have

to satisfy the conditions

z lk = ±i2R, (7 )

where also
K\k — and Km = °° •

If there are to be n transmitting bands z xk may be designed out of

n simple resonant components, all in parallel, wherein each component

accounts for only one band. For example, with resonant components

Zn . . . zr„, we have
1

Zik

=

i 1 r
zr\ zrj zrn

This is sufficient since, owning to the positive slope of reactance, there

is bound to be but one anti-resonant frequency and attenuating

band between every adjacent pair of resonant frequencies. It is

obvious that the component corresponding to. the zero frequency

transmitting band is an inductance, l\k ;
the component corresponding

to any (j) internal transmitting band is an inductance, lik , and capac-

ity, c\k in series; and the component corresponding to the infinite

frequency transmitting band is a capacity, c\k .

The magnitudes of the inductances and capacities will be uniquely

determined by satisfying the relations (7) at all the critical frequen-

cies. For at the critical frequency of the zero frequency transmitting

band zik = -\-i2R; at the lower critical frequency of any internal

transmitting band z\k = —i2R and at the higher critical frequency

z^ = -\-i2R; at the critical frequency of the infinite frequency trans-

mitting band z lk = —i2R. Hence, no matter what "constant k
"
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wave-filter is considered, the number of restrictions imposed on Si*

at the critical frequencies will always equal the total number of in-

ductances and capacities involved, whose magnitudes are therefore

given by the solution of the simultaneous equations (7).

By the second reactance theorem a corresponding value of s
2y5r
may

be obtained by designing it out of n components, all in series, wherein

each component is the inverse network of a component in the series

impedance, the product of their impedances being equal to R1 to

satisfy (6). The component in zik corresponding to the zero fre-

quency transmitting band is a capacity, c\k ; that to any (j) internal

transmitting band is a simple anti-resonant component of inductance,

l'2k, and capacity c{k , in parallel; and that to the infinite frequency

transmitting band is an inductance, l'ik . The relations between

inductances and capacities of the corresponding components are

given by
l\k _ _ ]U _ hk_ __ _ lik_ _ ™ /g\

c\k '
' ' c{k c{k '

' ' c?k

which determine the elements of z-ik as soon as those of zik are found.

An alternative method is to focus our attention upon the attenua-

tion requirements. To give n attenuating bands, z Xk may be de-

signed out of n simple anti-resonant components, all in series, each

component accounting for only one band. Representing these anti-

resonant components by zal . . . zan , the series impedance is

Zik = Za \ + +Zaj + . . . + Za „.

The component corresponding to the zero frequency attenuating band

is a capacity, C\k \ that to any (j) internal attenuating band is a

simple anti-resonant component of inductance, L\k , and capacity

C{k , in parallel ; and that to the infinite frequency attenuating band is

an inductance, L"k . As in the previous case z ik must satisfy (7) at

all the critical frequencies, which determines its elements. The

corresponding shunt impedance, z2k , may be designed out of n com-

ponents, all in parallel, wherein each component is the inverse net-

work of a component in the series impedance, their impedance prod-

uct being R2
. The components in z2k for the three typical attenu-

ating bands above considered in the discussion of z ik are in the

same order, an inductance, L\k , a simple resonant component of

inductance, Lik , in series with a capacity, Cik , and a capacity, C"k

We have here

c\k
" "

' c{k c\k
• • • cu
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A general comparison of these two methods of designing a " con-

stant k " wave-filter shows that the series impedances in the two

cases have the same number of inductances and the same number
of capacities. Since the total number of these elements is the same
in both and the two impedances are made equal at a number of

critical frequencies equal to this total number, these impedances

are identical at all frequencies. Similarly for the shunt impedances;

all of which agrees with the first reactance theorem and leads to the

following conclusion.

As regards propagation constant and impedance characteristics, only

one "constant k" wave-filter exists in each class, and the magnitudes of

its series and shunt impedances, each of which contains elements equal

in number to the critical frequencies , are uniquely determined by the

preassigned critical frequencies and the magnitude of k. Its physical

structure, however, is in general not unique.

The structure of these impedances may in all but the lowest classes

be given a variety of different forms, the number of inductances re-

maining fixed as well as the number of capacities. In the low pass,

high pass, low-and-high pass, and band pass classes, the above two

modes of derivation give the same designs for their respective series

and shunt impedances. In those of a higher class the designs so

obtained are different and for more than three elements per im-

pedance may be put in even other forms.

Taking the "constant k", low-band-and-high pass wave-filter with

critical frequencies /„, f\, f«, and /3, as an example, the first method

gives the series impedance as an inductance in parallel with both a

resonant component and a capacity, and the shunt impedance as a

capacity in series with both an anti-resonant component and an

inductance. The second method gives the structure shown in Fig. 2.

Two other equivalent structures for the series impedance are possible;

one is an inductance in parallel with the series combination of a

capacity and an anti-resonant component, the other is a capacity in

parallel with the series combination of an inductance and an anti-

resonant component. Similarly the shunt impedance may have two

other structures; one is a capacity in series with the parallel com-

bination of an inductance and a resonant component, the other is an

inductance in series with the parallel combination of a capacity and

a resonant component. -Relations between the element magnitudes

are given in Appendix III, which contains general equivalent im-

pedances. There being . four equivalent structures for each of the

series and shunt impedances this would mean a total of sixteen pos-

sible structures for this orft "constant k" wave-filter. The impedance
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and attenuation diagrams in Fig. 2 illustrate some of its properties.

Especially is it to be noted that the infinite attenuations, occurring

where the series impedance is anti-resonant, take place at frequencies

fa i and fai which are not arbitrary but depend 'entirely upon the

critical frequencies fD , f\, /2 and /3 .

~m rHffl\

Transmitting Band

+ i2R -

fo f, f, fa

Fig. 2—"Constant k" Low-Band-and-High Pass Wave-Filter

It may be added that in "constant k" wave-filters every internal

transmitting band is a confluent band formed by the junction of two

bands occurring separately in a wave-filter of higher class but with

the same configuration of elements.

Summarized, the above procedure for "constant k" wave-filter

design is:

(1) Obtain synthetically a structural form for the series impedance,

Zik, from either the transmission or attenuation requirements;
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(2) Determine the magnitudes of all inductances and capacities

in Zu. from the conditions, z Vi = ±t'2i? at all preassigned critical fre-

quencies, where R ( = k) is the given mean line resistance;

(3) Derive a structure, in addition to the inductance and capacity

magnitudes, of the shunt impedance, z2w considering the latter as an

inverse network to z Xk, where Zu&%k=F!*.

2. General Wave-Filters Having Any Preassigned Trans-

mitting and Attenuating Bands and Propagation Constants
Adjustable Without Changing One Mid-Point Character-

istic Impedance.

It was shown above how a " constant k " wave-filter may always

be designed so as to have any preassigned transmitting and attenu-

ating bands. A method will now be given for deriving the two most
general ladder types, each having one mid-point characteristic im-

pedance equivalent at all frequencies to the corresponding mid-point

characteristic impedance of the known " constant k " wave-filter;

one of them has such equivalence at mid-series, and the other at mid-

shunt. Because of this equivalence, these general wave-filters must

necessarily have the same transmitting and attenuating bands as the
" constant k " wave-filter which they include as a special case. Their

propagation constants will be found to be adjustable over a wide

range.

Mid-Series Equivalent Wave-Filter

Assume the known " constant k " wave-filter has n attenuating

bands and that its series impedance derived by the second method
has the form of n simple anti-resonant components in series, repre-

sented as

Zlk = Zal-\-Za 2-\- • • • Zan . (10)

Its mid-series characteristic impedance is

JTi*—x/RH-tan- (11)

Let the series and shunt impedances of the desired general wave-

filter be 2U and s>i, respectively, where the second subscript i in-

dicates that these impedances belong to the wave-filter which is to

have mid-series equivalence with the " constant k " wave-filter. Then

*" = \/sii*i+l*!„ ( 12)

and the fundamental relation is that

K 11 =K lk . (13)
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Certain inferences may be drawn as to the nature of the impedances

Zw and S31.

a. The series impedance zn is similar in form to the series impedance

zik and is anti-resonant at the same frequencies as su.. This follows

directly from a comparison of formulae (11) and (12). For whenever

Zik is anti-resonant, corresponding to an attenuating band, K\k is

infinite, and to make Ku also infinite zn must be anti-resonant irre-

spective of z2 i in order to maintain an attenuating band at these

frequencies.

b. The shunt impedance za corresponding to the series impedance

Zji and the given class of wave-filter may, in its most general form, be

taken as a parallel combination of simple resonant components {series

L and C) equal in number to the total number of inductances and capac-

ities contained in zn - This is a consequence of a general conclusion

based upon formulae (2) and (4) and the properties of reactances,

namely that in an attenuating band corresponding to each branch of

the series impedance frequency curve, where the absolute value of

su passes once continuously thru all values from zero to infinity,

the shunt impedance z2 i can be resonant no more than once. Since,

however, the number of branches in the zn frequency curve equals

the number of elements which zn contains, the above statement is

proven.

c. Series resonance and shunt anti-resonance coincide if both are

included in an internal transmitting band. Series and shunt anti-

resonance coincide if both are included in an internal attenuating band.

This is a necessary relation in either case to preserve band con fluency.

To ensure the necessary similarity between zn and Zu it will be

assumed that for every series component in zu. as above expressed

there is one of proportional magnitude in Zu which latter may be

written,

Sl 1 =/WlSa i+W 22fl2+ • • • W7„S„„, (14)

where the coefficients, mi, . . . m,„ are positive real numerics. From

the formulae (11), (12), and (13) the shunt impedance becomes

„.*+*<*'-*>. (15)
Z\\

If in this formula the assumed form (14) for zn corresponding to

any particular z Xk is substituted, it will be found that the resulting

expression for z2 i has exactly the requisite form to be the most general

shunt impedance which that wave-filter may have. This therefore,
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justifies the assumption regarding Z\\ and shows the latter to give

the general case having the specified characteristic impedance.

The coefficients, Wi, . . . m„, may be evaluated by fixing any n

physically realizable conditions such as n resonant frequencies of

the shunt impedance, which are frequencies of infinite attenuation

in the wave-filter. From the foregoing not more than two such

frequencies may be included in any internal, and but one in any other,

attenuating band. However, since the number of such conditions

equals the number of attenuating bands it will be considered most

useful to fix one resonant frequency in each attenuating band. If

2n has N elements, where N=2n— 2, 2w — 1, or 2», the shunt im-

pedance will have 2N which may then be found.

An evaluation process possible here is first to write the expression

for z-2i in (15) as the ratio of two polynomials with two variables, in

which the assumed relation for zn has been substituted and the

variables are an arbitrarily chosen known inductive impedance, z^,

and capacitive impedance zc , such, for example, as may occur in

z ik . Put each component of the desirable parallel resonant com-

ponent form of Zi\ in terms of these same two variables and two

undetermined coefficients, as azL -\-bzc , etc., and write the correspond-

ing polynomial ratio expression for s2 i which will involve the co-

efficients. A comparison of the two expressions for 221 which must

be equivalent gives 2N relations between the coefficients nti, . . . m n

of Zn and the 2JV coefficients a, b, etc., of Zi\. Next fix ;/ resonant

frequencies of z»\, satisfying the relation

221= 0, (16)

at frequencies /ix, . .
. /„x , one arbitrarily chosen in each attenu-

ating band. These give n simple ratios r .etc., which with the other

relations make a total of 2N-\-n simultaneous equations from which to

determine the same number of coefficients. Their solution will give

all coefficients explicitly in terms of the independent critical fre-

quencies/ ,/i .... and frequencies of infinite attenuation /i», . . ./„«,.

It is more practical, however, to obtain such explicit solutions for

the coefficients ni\, . . . m„ only, and to express the coefficients a, b,

etc., as functions of the frequencies and the w's combined.

That the n additional conditions in (16) are the maximum number

which can be imposed may be illustrated in the case of n=2 by the

general low-band-and-high pass wave-filter of Fig. 3 corresponding

to the " constant k " wave-filter of Fig. 2. This has a total of twelve

elements per section which it will be seen are fully determined by
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the following twelve conditions: four at the critical frequencies f ,fu

ft and

/

3 ,
where -— = — 1; four at frequencies

/

al and/fl2
where both zu

432 i

and zi\ are anti-resonant; one at a variable frequency in the internal

transmitting band where Z\\ is resonant and z 2 i anti-resonant; one at

WP

HK HKr?
W

Transmitting Band

f f f
2

Ft. f.. r,

Fig. 3—General Mid-Series Equivalent Low-Band-and-High Pass Wave-Filter

one other frequency where the absolute value of the characteristic

impedance is fixed; and two added conditions at the adjustable fre-

quencies of infinite attenuation /i« and /2«>, bringing the total up

to twelve.

In brief, the procedure for designing the general mid-series equiva-

lent wave-filter is:

(1) Write down from the known " constant k " wave-filter having

n preassigned attenuating bands the form of the series impedance

with undetermined coefficients mi ... m„ as in (14).
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(2) Obtain two expressions for the shunt impedance, one derived

thru the characteristic impedance of the " constant k " wave-filter

and containing the coefficients mi . . . mn ; the other from a con-

sideration of its possible most general form corresponding to the

series impedance, with coefficients a, b, etc. Equate these expres-

sions at all frequencies and thus obtain a set of relations between the

coefficients m.\ . . . m„ and a, b, etc., equal to the latter in number.

(3) Fix one resonant frequency of the shunt impedance, a fre-

quency of infinite attenuation, in each attenuating band, using the

second expression above which will determine n simple ratios — - etc.
b

(4) Solve these simultaneous equations by obtaining an explicit

solution for the coefficients mi, . . . m n in terms of the critical fre-

quencies /o, /i . . . and frequencies of infinite attenuation f\ M . . ./„«,

and a solution for the coefficients a, b, etc., in terms of these fre-

quencies and the coefficients m u . . . m„.

This method will later be applied to the design of the low-and-band

pass wave-filter.

Mid-Shunt Equivalent Wave- Filter

The general wave-filter whose mid-shunt characteristic impedance

is equivalent to that of the " constant k " wave-filter can be obtained

in a manner somewhat similar to the one above. However, it is

possible to derive the mid-shunt equivalent directly from the mid-

series equivalent wave-filter by a simple process wherein these two
are assumed to have equivalent propagation constants.

Let the series and shunt impedances of this wave-filter be Zn and
s22, and its mid-series and mid-shunt characteristic impedances

2£i2 and Ka, respectively. The fundamental condition here is that

K.22=K.2k- (17)

Under the assumption that the wave-filter has a propagation constant

equivalent to that of the general mid-series wave-filter, where Kn =Kik,
we may write from (1)

Zn_Zl2
Z21 Z22

and

_ r 2Kik— Z11 2z2 2— Kik
e l =

2/fijfe-j-Zii 2z22+K 2k

These relations and (1) give

Z11Z22 = Z12Z21 =KikKik = ZikZtk = R2
. (18)
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Hence, the general mid-shunt equivalent wave-filter can be obtained by

designing its series and shunt impedances as inverse networks, of im-

pedance product R2
, to the shunt and series impedances, respectively,

of the general mid-series equivalent wave-filter, under which conditions

the two wave-filters have equivalent propagation constants.

To illustrate, a structure for the general mid-shunt equivalent

low-band-and-high pass wave-filter corresponding to Figs. 2 and 3 is

Fig. 4—General Mid-Shunt Equivalent Low-Band-and-High Pass Wave-Filter

shown in Fig. 4. The impedance diagram indicates how the trans-

mitting and attenuating bands are produced. Here each anti-reso-

nant component in the series impedance is responsible for one of the

infinite attenuations shown in the equivalent attenuation diagram of

Fig. 3. It may be seen also that when in practice it is necessary to

balance the two sides of the line, the wave-filter of Fig. 4 requires

more series balanced inductances and capacities than that of Fig. 3

to give an equivalent propagation constant. For this reason the mid-

shunt equivalent wave-filter is usually not as economical as the mid-

series equivalent wave-filter.

3. M-Type Wave-Filters.

The term M-type will be applied to that case in each of the above

general wave-filters in which the coefficients Wi . . . m n coalesce to
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the single value m\= . . . = m„ = m, leaving but one degree of freedom.

They are of special interest because in wave-filters having many ele-

ments the impedances can be determined more directly than by the

general methods above and, of greater importance, because the mid-

shunt characteristic impedance, K.2i{m), of the mid-series equivalent

M-type and the mid-series characteristic impedance, Ku(m), of the

mid-shunt equivalent M-type, both functions of m, can be made
approximately a constant resistance over the greater part of every

transmitting band, a desirable property.

In the mid-series equivalent M-type it follows from (14) and (15)

that, since z lkzik = R2
,

Sn =mz\k,

1-m2 ,1
and 22 i

= —^ Z\k-\-—z-ik,4m m

(19)

showing the shunt impedance to be expressible as a series combina-

tion of different proportions of the " constant k " series and shunt

impedances. This structure is usually different from but equivalent

to the mid-series equivalent wave-filter obtainable by the first method

in which the wz-coefficients are all equal to m. The value of the co-

efficient m is determined by fixing a resonant frequency of 221, that is,

any one frequency of infinite attenuation, /«. From (19), for

\ 1 +
/4z2A

, (20)
V z xk Jfx

The corresponding mid-shunt equivalent M-type having the same

propagation constant follows from (18) with impedances

Sl2 =
1

J-+-i
mZlk 4m

,22fe (21)
1 — m 2

and _ 1
So o —

m

Here the series impedance is expressible as a parallel combination of

different proportions of the " constant k " impedances.2

2 It is worth while to point out that from the nature of (19) and (21) these same

relations result if z lk and z<k are the series and shunt impedances zi and z-i of any

ladder type recurrent network whatever. In order that there be a physically realiz-

able structure corresponding to such general relations it is sufficient that < in 4 1.

A change of m will change the propagation constant without changing the mid-

series characteristic impedance of the first network, and mid-shunt of the second.
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The characteristic impedances, Kn(m) and K 12(m), follow from

the substitution of (19) and (21) in (1), and are given by the relations

R
Kn(m)

K 12(m)

R

1 +—\ +
4z2*

1 +
(l-m^zik

(22)

4 z2fe

Fig. 5 shows graphically how this impedance ratio, neglecting dis-

1.5

1.4

-1.0 -.9 -8 -.7 -6 -5 -.4 -.3 -2 -.1

Fig. 5—M-Type Characteristic Impedances in Transmitting Band

sipation, depends upon m in any transmitting band. For the limiting

values m = \ and m = it corresponds to —^- and
K 2k

R
respectively.

For the intermediate value m = .Q it, and hence Ki\(m) and Ki 2(m),

is approximately constant over the greater part of the transmitting

band thereby approaching the ideal sought. A wave-filter network

having these latter terminations could then be connected between
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constant resistance terminal impedances without introducing appreci-

able reflection losses at the important frequencies to be transmitted.

It may also be added that where a number of wave-filters trans-

mitting in different bands are to be joined in series or in parallel the

usual terminations correspond to Kn{m) and Ki\{m), respectively

(where m is about .6), with the omission of the terminal half-series

impedance in the first case and terminal double-shunt impedance

in the second. In the transmitting band of any one of these wave-

filters the role of the omitted impedance is approximately fulfilled

1 7'

AAAAAr

2
Fig. 6—Lattice Type Recurrent Network

by the resultant impedance of the other wave-filters. The ap-

proximation is very close when such connections are made with two

complementary wave-filters having the same critical frequencies.

4. Equivalent Lattice Type Wave-Filters.

The lattice type of recurrent network shown in Fig. 6 offers a

simple example of a uniform type which can physically be made to

have properties equivalent to those of the ladder type. Its formulae

for propagation constant and characteristic impedance in terms of

the series and lattice impedances, \z x and 2s2 ,
are known to be

2z[
cosh V = 1

4z', -z?
(23)

and K' = \/z[ z'>.

A comparison of these formulae with those of the ladder type in (1)

shows that when r' = I\ and K'=Ki,

Zl=Zi,

(24)

and Z2 = jZi+ z2 ;
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and that when r' = I\ and K' =K2 ,

1

Z\ 402

and
(25)

22 = Zi-

In both cases it is apparent that for equivalent results the lattice

type requires more elements than the ladder type and is, therefore,

not as economical.

Part II. Design of Low-and-Band Pass Wave-Filters and
Reduction to Wave-Filters of Lower Class

The foregoing theory of design can be applied separately to the

design of wave-filters of each class in general use, which classes are

the low pass, high pass, low-and-high pass, and band pass. However,

o—OJDW^

rL,k

-jh |l^T =
C,k

rC2k

C 2 k

Fig. 7—"Constant k" Low-and-Band Pass Wave-Filter

instead of such individual treatment designs will first be derived for

low-and-band pass wave-filters which are wave-filters of higher class

than these four classes and include the latter as particular cases. The
simplifications in structure and formulae which result upon their

reduction to the lower classes will be considered later.

Low-and-Band Pass Wave- Filters

The structure of the " constant k " low-and-band pass wave-filter

as derived from the attenuation requirements has the form of Fig. 7.

Since this form may be obtained from that given in Fig. 2 by assuming

the critical frequency, /3 , in the latter to be infinite, we may under

this assumption refer to Fig. 2 for the impedance and attenuation

characteristics corresponding to Fig. 7.

The series impedance zr . expressed as a function of frequency is

Zik= i2-nfLik(l-\- l-WfrLikdk),
(26)
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where r is the ratio between the two inductances. The magnitudes

of Lik, Cu and r are found from the conditions (7) which Z\k must

satisfy at the critical frequencies f , /i, and

/

2 ;
namely, z lk = +i2R,

—i2R, and +i2R. The resulting simultaneous equations become

foW+flx-fy=+l,

hw-fix-fiy =-l, (27)

and /2w+fix -f\y = + 1

,

, T yR „ x 2 wx
where Lik = rL—; Cik = -,—jt? rl and r= 1.

wx AvRiwx — y) y

The solution of (27) gives

R
L\k —

ir(fo—fi-rJ-ij

(fo-fi+W
(28)

Cik =
4tt[(/o/i - f0/2+/1/2) (fo -/1+/2) - f0/1/2] A

and r= (/o-/i+/3)(^-)+?)-l.
/O /l '2

The corresponding shunt elements are obtained from the series ele-

ments by the inverse network relations, — = -^-=R 2
, so that

Clfc C2fe

Lik = Ri
Cik,

(29)

and t-2*- -po'

With the " constant & " wave-filter elements so determined we

shall now derive the series and shunt impedances, zn and 021, of the

general mid-series equivalent wave-filter. Putting for convenience

ZL = i2^Lik '
andzc=

i2^fCrk'

formula (26) becomes

rzLzc
Z\k = zL -\

. ,

rzL+zc

and zl zc = rsR2
, (30)

where 5 =
(fo-fl+/2) ?
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By (14) we may write for the general series impedance

zn =miZL -\ :—

,

(31)
rzL+ zc

in which the coefficients m\ and m 2 are to be determined. Substitu-

tion of these relations in (15) gives one expression for the shunt

impedance

f ^(l-m?)zi+r2[l+^ (l+r-m, (f»i+»*•)) ]zi.zc

+r
[
2+T((1+?' )2~ (wi+W2r)2

)] 2/̂ +2?:

_ _ ^ _ . C32)"' m 1 r
3
sz'

i

L+r2s(2mi-\-m2r)zLZc+rs(mi+ mr)zc

Also, since the series impedance has three elements, the most general

structure for Z21 is three resonant components in parallel. Letting

these components be azL -\-bzc, czL -\-dzc , and ezL -\-fzc, as in Fig. 8,

the corresponding total impedance expression is

Z21 =

ace . . (ac
,
ae . ce\ ., . ( a . c . e\ ., . ,

ac-\-ae-\-ce a(d+f)+c(b+f)+ e(b +d)_ / 1 1 1 \
2<-+

Rf
2L2c+ U+

rf
+7J 2c

• (33)

W/ "* ' W/

Equality between (32) and (33) at all frequencies requires that the

following relations be satisfied:

ace r
3s /i -

l +
C

a+j='\j+W +r)*-^+m*)i

)]

®F+^)J +(5)7-^' (34)

G+f)J+(r+7)3 + e +D7-»*^+^
and r + j+ 7- =r$ (*»i+m2r) )oaf
where r and 5 are given in (28) and (30).
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To fix one resonant frequency of z2 i in each of the two attenuating

bands, at /i» and /2«, we may put

and

which give finally

and

(azL -\-bzc)jr
iM

=0,

(czL+dzc)f
2oo

=0,

a
_. fofift

b (/0-/1+/2)/?

c /0/1/j

[U-fi+fM

r,

-r.

(35)

These eight simultaneous equations in (34) and (35) are sufficient

to determine all the coefficients m u m2 , a, b, c, d, e, and / in terms

of the critical frequencies f , /1, and /2 , and frequencies of infinite at-

mjLik [

jrtfW^m
2 rL,[<

° nm^

C,kl 1^2?jk

Fig. 8—General Mid-Series Equivalent Low-and-Band Pass Wave-Filter

tenuation, f\x and /2«. The method of solution here used will be

indicated only and the final results given in Appendix II. The
combination of (35) and the first three equations of (34), makes it

possible to eliminate all coefficients but m\ and m2 and to obtain

formulae for the latter explicitly in terms of the frequencies. From

(35) and the first equation and last three equations of (34), b, d, and/

are calculable in terms of nti, m2 , and the frequencies. These com-

bined with (35) and the first equation of (34) furnish the values of

a, c, and e. The formula for the dependent frequency of infinite

attenuation, f'lx , results from putting (ezL+fzc) f r =0.
J loo

The general mid-shunt equivalent wave-filter, having impedances

212 and Z22, will be derived from the general mid-series equivalent

wave-filter above through the inverse network relations of (18);

namely, ZuZy< = ZioZ2i = R2
. For the series impedance we have upon

the substitution of z2 i

R
Zl2 = = R* R' R-

z2 i azL+ bzc czL+dzc ezL+ fzc
'

(36)
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Taking the first term of the right member as typical, it may be trans-

formed through (29) to the form

R°- 1 1

aZL+bzc azL.bzc i2irfaC2k-\-

(37)

OtfT?

which is the impedance of an anti-resonant component having an

inductance, -^> and a capacity, aCik- Similarly each of the other two
b

terms of (36) represents the impedance due to an anti-resonant com-

E»2J

d
ponent, in one case of elements -— and cC2k, and in the other of ele-

ments -7- and eCik-

The shunt impedance may by (29) and (31) be put in the form

R2 R2

Z22 =
2n miZL+m 2rzLzc

tzl+ zc

1

(38)

i2irfmiC2k +
t2irf-^— -\-

rc

1

w2 i2irjm 2rC2k

and is the impedance of a capacity Wi C2k in parallel with a resonant

component of inductance —— and capacity m 2rC2k- The structure
m 2

corresponding to z 12 and z22 is shown in Fig. 9.

/Wh rfvWH r^TOT

= = m
1
C2 (<

Fig. 9—General Mid-Shunt Equivalent Low-and-Band Pass Wave-Filter

The method of reducing these general wave-filters to the desired

lower class wave-filters will now be taken up briefly. The resulting

structures and formulae are given in Appendix II, where the two

wave-filters having identical propagation constants are considered
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together and are numbered. The subscripts i and 2 on these num-

bers refer, respectively, to the mid-series and mid-shunt equivalent

wave-filters. The quantities with brackets occurring in some of the

formulae are included merely to indicate the origin of their equivalents

from the low-and-band pass wave-filters.

Low Pass Wave-Filters

These are some of the simplest wave-filters and are here obtained

by considering

/0-/1--/1-O. (39)

In general these wave-filters have three elements per section and are

identical with the M -types since there is but a single coefficient

m\ = m. The "constant k" structure, series inductance and shunt

capacity, results when fi& — co .

High Pass Wave-Filters

These wave-filters which are complementary to the low pass wave-
'

filters also have simple structures, in general three elements per

section, the M-types. To derive them assume in the general formulae

/o = 0,

(40)

and ji =/2« = co .

The additional condition, /i«,=0, gives the "constant k" wave-

filter of series capacity and shunt inductance.

Low-and-High Pass Wave- Filters

For the low-and-high pass transmission characteristic put

/2=/2o0 = oo. (41)

Here some simplifications in notation may be made, as is indicated

in the formulae by the quantities in brackets. The general struct-

ures, M-types, require six elements per section. A limiting case, the

" constant k " wave-filter, having four elements per section, results

when /100 = V/0/1 =/{oo

.

Band Pass Wave- Filters

With the condition

/o = (42)

an internal transmitting band is retained and also the two independent

frequencies of infinite attenuation, /i«= and /2». Depending upon
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the values of these frequencies, the wave-filter structures may have

from three to six elements per section.

In the six element pair/i« and/200 are unrestricted except that they

must lie within their respective attenuating bands. These wave-

filters are the general ones including the others. A relation found

to exist here is

i-«5 fUL
which has been incorporated in the formulae. The three element

structures, of which there are two pairs, come from putting /i«,=
and /200 =fz in one case, /i«, =/i and /200 = 0° in the other. Those

having four elements are the "constant k," where /ioo=0 and

/200 = 00 , and the two similar appearing pairs in one of which /2» —fz,

and in the other /i«, =/i. Two pairs of five element structures exist,

one with /100 =0 and the other with /2« = 0° . It is of interest to

point out that w 2 = 1 in all of the band pass wave-filters where /i«o =0,

and wzi = 1 where /2oo = 00 , showing that in these cases certain of the

elements will be like those of the "constant k" wave-filter. Also,
_

in the limiting cases where a frequency of infinite attenuation co-

incides with a critical frequency, the attenuation constant increases

from zero at this frequency to a finite limiting value at the other

extreme of the attenuating band.

The M-type band pass wave-filters are given by putting m\ = mi = m.

Choosing

/

2« as the independent frequency, the formulae simplify to

m = v(
i

-i)(
i-i)

./1/2

a=d= 'ii-

4tn

A f
-/l/2

and jioo — -s
—

/2oo

4w V fJtJ (43)

6 = c = i-«V, ,M

Part III. Composite Wave-Filters

The preceding parts of this paper have considered wave-filters as

made up of a series of uniform sections. We know, however, from

this discussion that the propagation constants of certain general
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wave-filter sections can be changed without changing one of their

mid-point characteristic impedances. Obviously then it should be

possible to combine such sections so as to give a non-uniform network

which introduces a number of different propagation constants.

The composite wave-filter is a network of serially connected wave-filter

sections some or all of which are different in propagation constants, but

adjacent sections of which are equivalent in characteristic impedance at

their junction. The latter condition ensures the absence of impedance

irregularities within the network. Consequently the composite wave-

filler is specified by the sum of the propagation constants of the individual

sections and the characteristic impedances of the end sections.

The advantage of composite over uniform wave-filters is in their

flexibility of design by means of which it is easier and more economical

to meet the attenuation and impedance requirements in many wave-

filter networks. For example, to utilize the frequency range as

completely as possible the attenuation of the network should in

general rise rapidly upon entering the attenuating bands and remain

high. It is also often desirable that the network have an approxi-

mately constant resistance terminal impedance in the transmitting

bands. No uniform wave-filter possesses all these properties as it was

found that the attenuation constant of any section varies markedly

with frequency over the attenuating bands, being much higher in

some parts then in others; then, too, the impedances of most wave-

filters are not the best available. To give high attenuation at fre-

quencies where the attenuation constant of a section is low requires

a relatively large number of uniform sections and this means a sur-

plus of attenuation at other frequencies. Aside from economic con-

siderations this number is practically limited by the amount of at-

tenuation introduced in the transmitting bands due to dissipation

in the elements. In a composite wave-filter, however, it is possible

to distribute the low and high attenuations of the individual sections

over the frequency bands so that an efficient use is made of these

attenuation properties and a more uniform high attenuation is pro-

duced; a desirable impedance characteristic is obtainable by M-type

section terminations.

In the case of ladder types, for example, we may look upon the

composite wave-filter as having been originally a number of sections

of the general mid-series or mid-shunt equivalent wave-filters wherein

now the propagation constants of the sections have been changed

without changing their characteristic impedances. The mid-series

and mid-shunt wave-filters may also both be included since their

junction can be made through the intermediate use of the "constant
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k" wave-filter, a half-section being the minimum. Again, mid-series

and mid-shunt sections derived from prototypes other than the

"constant k" wave-filter, such as have already been indicated in con-

nection with the generalized M-type formulae, are other possible

units. The two different half-series impedances which join where

two mid-series sections are connected together can always be merged

into one impedance having the same impedance structure but in

general different magnitudes for all elements; a similar merging of

shunt impedances can be effected at the junction of two mid-shunt

sections. It is here from a structural standpoint that the ladder

type is much superior to other types, such as the lattice type over

which it has the additional advantage of a smaller number of elements

per section. For if one or more sections of the lattice type are in-

cluded in the composite network each section must be completely

constructed since there is no possibility of merging adjacent im-

pedances.

It is known that among band pass wave-filters having equivalent

mid-point characteristic impedances some have positive phase con-

stants and others negative at the same frequencies in the transmitting

band. The question may be raised as to whether such sections

can not be combined in a manner which will give zero phase in addi-

tion to zero attenuation throughout the transmitting band. The
impossibility of this follows directly from the phase constant theorem

previously given, namely, that the phase constant increases with

frequency throughout the transmitting band, irrespective of its sign.

Combining sections increases the rate of total phase change with

frequency.

Equivalent Substitutions

There are equivalent structures for certain wave-filter sections as

well as for many of their impedances and impedance combinations.

This is of practical importance in design where it is sometimes ad-

vantageous to use one form in preference to another. The number of

elements, their magnitudes, or both, are some of the determining

factors in this choice.

The wave-filter sections here considered are of the band pass class

and their equivalence relations, both as regards current propagation

and impedance, are given by the following tabluation in which these

wave-filters are referred to by number as in Appendix II. The
subscripts i and 2 are omitted since it is to be understood that

the relations apply on the one hand to mid-series sections having those

numbers with a subscript 1 and on the other to mid-shunt sections
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numbered correspondingly with a subscript 2 - We have then for

mid-series or mid-shunt sections:

(a) IV=VIII+ IX,

(b) VII= V+ VI, (44)

(c) X= V+ IX,

(d) XI= VI+ VIII,

whence it follows that

(e) IV-\-VII=X+ XI,

etc. To verify these identities we need to consider the propagation

constants only since impedance equivalence is known to exist. This

is most easily accomplished in either the mid-series or mid-shunt

cases by using the formula for e~r in (1) to show the sufficient rela-

tion for propagation constant equivalence,

e
-r = e-Ve

-r". (45)

Here F represents the propagation constant of the section in the left-

hand member of (44) a, b, c, or d; T' and Y" those of the correspond-

ing right-hand member sections. It can likewise be verified that

these identities hold even when dissipation is present if in both struc-

tures all inductances have the same time constants and if a similar

relation holds for all capacities. A comparison shows that the num-

bers of elements in the two structures corresponding to the left- and

right-hand members of (44) are, respectively, 8 and 10 in (a), and 8

in (b), 7 and 9 in both (c) and (d), and 12 and 12 in (e).

Equivalent impedance structures involving two inductances and

two capacities have already been mentioned in the discussion of the

" constant k " low-band-and-high pass wave-filter in Part I. These

also include equivalent three element structures. The formulae

which hold when a transformation is made from one structure to an

equivalent one follow directly from those for certain combinations

of two different general impedance components, as given inAppendix

III. Because of this generality of the components, equivalence exists

even when there is dissipation provided the inductances and capaci-

ties have time constants which are, respectively, the same in all.

Moreover, since the two structures are identical from an impedance

standpoint at all frequencies of the steady periodic state, they will

be identical similarly under any conditions of the transient state.

The method of deriving the formulae consists in first forming for

the two corresponding networks their general impedance expressions

which are found to have the same functional form in the two com-
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ponents and differ only in the constant factors involving the network

parameters. These corresponding factors in the two expressions

are then equated to make the two impedances identical at all fre-

quencies and it is this set of equations which leads to the relations

between the parameters of the two networks. The list of structures

given in Appendix III covers the usual transformations in practice

and could be extended by adding more and more elements.

Among other types of possible substitutions are obviously those

involving a change from three star-connected (T) to three delta-

connected (II) similar impedances, or vice versa, and from three

star- or delta-connected inductances to a transformer with mutual

impedance. As a simple illustration consider the mid-series band

pass wave-filter VI 1 having series inductance and capacity and shunt

capacity which can be put in the form of series inductances connect-

ing a series of three star-connected capacities. Changing these

capacities into the delta form gives a recurrent structure in which

inductances alternate with capacities for the series impedances and

capacities form the shunt impedances. Similarly V% may be changed

to a structure in which inductances alternate with capacities for the

series impedances and inductances form the shunt impedances.

Another structure for the latter is a series of transformers connected

by series capacities.

Composite Band Pass Wave- Filter Illustration

A band pass wave-filter has been chosen to show what can be

accomplished by means of a composite structure towards realizing the

ideal of attenuation and impedance characteristics. The transmit-

ting band and impedance are specified by

/! = 4,000 ~,

/2 = 7,000 ~,

and R = 600 ohms.

The sections arbitrarily taken to make up the structure are one each

of the following:

IVh M-type, m= .6, (/ lt0 =3739 ~,/2„ = 7489 ~),

Xi,/20, = 8300~,

and XT 1 ,/1*=3300~,

where a half section of the M-type is placed at each end so as to give

the network a symmetrical terminal characteristic impedance of
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Kz\(m= .6), as in Fig. 10. Dissipation in the inductances is included

by assuming effective coil resistance = —— coil reactance; it has the

effect of eliminating abrupt changes in the attenuation and impedance

characteristics. Computations made on this basis give the sum of the

three attenuation constants and the impedance Kn(.Q) as shown in

the figure.

The attenuation over a range of 2500 cycles about the center of

the transmitting band is less than .19 attenuation units and for fre-

quencies in the attenuating band is high, remaining after the first

maximum on either side of the transmitting band above a value

7.30 in the lower frequency attenuating band and a value 7.10 in. the

upper. The characteristic impedance i^2i(-6) over the 2500 cycle

range is everywhere within 3% of the desired resistance value, 600

ohms, and has here a negligible reactance. Its resistance component

has maxima at the critical frequencies and decreases rapidly to small

values in both attenuating bands. The reactance component is nega-

tive like a capacity reactance at very low frequencies, has a positive

maximum at the lower critical frequency and negative minimum at

the upper critical frequency, and is positive like an inductive react-

ance at very high frequencies. This demonstrates the possibilities

of the composite structure method.

APPENDIX I

Derivation of Fundamental Formulae

Although formulae for the propagation constant and characteristic

impedances of the 'adder type of recurrent network are well known

and follow readily from a consideration of the current and voltage

relations shown in Fig. 1, it is perhaps of interest to derive them as

a special case of general formulae which involve admittances3 and

which are directly applicable to any type of recurrent passive

structure including loaded lines.

Let the periodic section of the recurrent structure be defined by the

one-point and two-point admittances A aa , A bb , and A ab ,
where the

subscripts a and b , respectively, refer to its two pairs of terminals.

Then the current at the junction, q, in terms of the voltages at the

junctions q-1, q, and g+1, is

Iq=AabVt-i—AbbVq= AaaVq
—AobVq+ u (1)

3 The solution by Difference Equations in terms of the admittances was suggested

by J. R. Carson and is a convenient form for expressing the general results.
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whence
{A aa+A bb ) Vq-A ab{Vq- x+ Vq+i) = (2)

which is the Difference Equation of Propagation.

Letting

Vq=Me-iT+NtflT, (3)

equation (2) becomes

(A aa+Abb-2Aab coshT)Vq=0

which gives, for all values of Vq ,

< t, A aa~\~Abb
cosh I =—s~a

•

2^ a6

Since equations (1) when combined give

/«-i(X«-il»)Ff+iilrt(Vi-i-Vf+i),

we have upon the substitution of (3)

wherein the characteristic impedances Ka and Kb , as denned by the

equation, are

1

Ka

Kb \

=A abs'm\\T*= \{A aa —A bb).

In terms of the admittances then

cosh I = —^-j >

2i4 fl 6

and (4)

Ka \ ,/ ^ aa+^66 \\ i, / 2^ a& \
2 (A aa-A_ 1

Kb) \A aaA bb—

A

ab

> 1 ( 2Aab
\ (

Aaa-A bb \

)\ \Aaa+Aj ^\A ao+A bb)

These formulae can readily be expressed in terms of the impedances

Zaa , Zbb , and Zab ; or in terms of the three star-connected (T) or three

delta-connected (n) impedances which may represent the section.

Another general formula for the propagation constant which is

sometimes convenient may be derived as follows. Assume that the

recurrent structure is open-circuited at the junction q; then in (1)

I
q
= 0, so that

Vg-\ _ Abh_ _ J_
Vq A ab vab

'

and Vq+\ __ Aaa _ _1_

Vq A ah Vha
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in which vab and vba represent the transfer voltage ratios, taken in

the two directions, of an open-circuited section. By (4) we find that

cwhr-*(-p+-M. (5)
\Vab Vba/

Hence, the hyperbolic cosine of the propagation constant in a section

of any recurrent network is the arithmetic mean of the reciprocals of the

two transfer voltage ratios of an open-circuited section.

For a symmetrically terminated section

A. aa ==A bb
== -A 01

A ab = A T ,

Ka =Kb = K,

and v^ = Vba = vr-

Hence,

cosh r= -7- = —

,

At vt

(6)

and K =
a°^~(tS a'^~*

In the ladder type of Fig. 1 consider first a mid-series section. For

this

|2l+22

"0 '

2iS2+ iSl
2

'

At 22

2122+ J2!
2

cosh r = 1 llZ l

2 2

Then

cosh r = i+i-,
(7)

and K x = y/z&%+\z?.

For a mid-shunt section

. = 2
i
+222

i

and A T=— >

2j
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giving necessarily the same propagation constant formula as in (7) and

VS1S2+1S12 A i

The two formulae

_ p _ 2K\—Z\ _ 2z2~~-tv2 yQ»

' ~ 2^1+Zi ~ 222+X2
W

may be verified by substitution in (7) and (8).

In the lattice type of Fig. 6 the admittances are

A = 2l
/ +422

,

and At—

which lead simply to formulae

42i22
' '

42o'-2/

coshr'=i '

2z[

and 422'-2{
(10)

K'= VzJzT.

Properties of Reactances

The first half of Theorem 1 on non-dissipative reactance networks,

stated in Part I and relating to the positive slope of reactance with

frequency, can be shown easily by the method of induction where the

reactance network is the usual case of series and parallel combina-

tions of inductances and capacities, considered as non-dissipative.

Let z' and z" be two impedances, and let zs and zP be the impedances

of their combinations in series and in parallel, respectively. It fol-

lows that their derivatives with respect to frequency have the relations

dzs = dJ dz^

df df df'

dzP = 1 dz' 1 dz" (11)

These show that if z' and z" are reactances having positive slopes with

frequency, 2 S and zP will also have positive slopes. Beginning then

with the two simplest elements known to have positive reactance

slopes, a single inductance and a single capacity, we may combine

them and add others in any series and parallel combinations with



36 BELL SYSTEM TECHNICAL JOURNAL

the result of a positive total reactance slope in every case, due to the

above relations. That this property is not limited to such combina-

tions is seen from the general impedance expression for a non-dissipa-

tive reactance network,4

z =iMM*-
f2) --- (fl -f2)U

. (12)tM
(fi

2-P) . . . (fL-x-f
2
)

Here M is a positive real, and the resonant and anti-resonant fre-

quencies, /i . . . f-2„, alternate and are in the order of increasing

magnitude. The exponent, u, is unity or zero according as a resonant

or an anti-resonant frequency is the last of the series. Assuming

without loss of generality that f\ is not zero, the reactance increases

with frequency from zero frequency up to f=f\, since all the factors

are positive. As / passes thru this anti-resonant frequency the re-

actance changes abruptly from positive to negative infinity and when

/ increases to the resonant frequency fi the negative reactance in-

creases to zero. As / increases beyond the value f-i the reactance is

again positive and the cycle of reactance changes with frequency

begins over again.

The possibility of representing such a general reactance identically

at all frequencies by a network constructed of either a number of

simple resonant components in parallel, or simple anti-resonant com-

ponents in series, follows from the fact that in any particular case the

number of inductances and capacities involved is always equal to

the total number of conditions which this network must satisfy to

obtain such equality. Thus, its reactance must be zero and infinite

at the given resonant and anti-resonant frequencies, respectively, and

must have a definite magnitude at some one other frequency, which

conditions are sufficient to determine all the impedance elements.

In general, other equivalent combinations of inductances and capaci-

ties are also possible.

Theorem 2, relating to inverse networks, will be proved by an

inductive method in which the given reactance network is assumed to

have the form of series and parallel combinations of inductances and

capacities, a form which by the first theorem can be taken to represent

the reactance of any non-dissipative reactance network. Let z
{
and

z'2 be one pair of impedances which are inverse networks of impedance

product D2 to each other, and let z" and z" be another pair so that

Z1Z2 = z'i'z'i = D2 = a constant positive real.

Then z[ and z'/
1

in series, and z2 and z" in parallel are a pair of inverse

4 See paper by G. A. Campbell, Vol. I, No. 2, p. 30, this Journal.
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networks of impedance product D2
. This is readily shown, for here

we have

(2i+21 Ha+jO—^+i?
D

Similarly z, and z" in parallel, and z\ and 2/ in series are another pair

of impedance product D2
.

The simplest pair of inverse networks in the case of reactances is

an inductance and a capacity. If in an elementary application of the

above relations the element L\ corresponds to zu Ci to z2 , Cx to Zj
,

and L 2 to z, , where then

§r^' =D2
' (13)

it follows that L\ and C\ in series or in parallel, and L" and C'i in

parallel or in series, respectively, are inverse networks of impedance

product D2
. By successive applications of these relations we may con-

struct any given reactance and its inverse network.

It should be mentioned that these inverse network relations are

even more general than has been considered above, for an elemental

pair of inverse networks, besides an inductance and a capacity, is

two resistances.

Phase Constant

To show that the phase constant increases with frequency through-

out each transmitting band of a wave-filter, we may proceed as fol-

lows, basing the proof primarily upon the fact that the slopes with

frequency of non-dissipative reactances are positive. Consider a

mid-series section of the ladder type Z\
t
z2 . The impedances as meas-

ured across one pair of terminals when the other pair is open or short-

circuited are, respectively,

Zo = \Zi+ Zo,

and Zi = 4si+
z 1

-
r-2z2

'

whose derivatives with respect to frequency may be written

dZ . dZs . .-

-77 = i s2 , and —rj = t t
2

,

df df

where s
2 and t

2 represent essentially positive quantities in accordance

with the above underlying fact.
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The general propagation constant formula is

cosh (A-\-i B) =cosh A cos B-\-i sinh A sin B,

22 r2 -\-iXi

_ ri (ri+2r2)+x2 (xi+2^ 2) . (r&i— rix*)

2(r2
2+x2

2
)

"^
2(r2

2 +.r2
2
)

'

ri, r2 and *i, x2 being the resistance and reactance components of the

two impedances, z y and %%.

In the transmitting bands of non-dissipative wave-filters where

f\ = ri= o, the formula becomes

cosJB-1+i-.
Xi

Differentiating this equation and introducing the above facts, we
obtain for the rate of change of the phase constant with frequency

dB = (1-eosft)
s

.

n2 5+/2 cQs2
a/ £1 sin x)

This rate obviously has the same sign as the denominator which we
shall show is positive. For, the non-dissipative wave-filter being

considered as the limiting case of one having small positive dissipa-

tion, we may temporarily return to the general propagation constant

relations (14) in which r x and r2 are assumed to be positive infinitesi-

mals. Then in the limit when fi = r2= 0, since also X\ and x2 are of

opposite signs in any transmitting band, it follows that Xi and

sin B are of the same sign and that their product is positive.
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APPENDIX II.

I.

—

General Low Pass Wave-Filters of Ladder Type
L,

° nym^-

I

L.

J C2

c ==c.

Li = mLik, Li= cL\k,

Co = mC-2k. C\ = cC«k-

t - R r l

m = [mi] = Jl-/§- , c =
l-w2

4w

II.

—

General High Pass Wave-Filters of Ladder Type
Li

m = [ni 2]='Jl— jf, b =
4w

f,. f,
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III. General Low-and-High Pass Wave-Filters of Ladder
Type

Li

hi,

"oW
±

|L 2 |L,

Lei

Li L,

n2 c!

X

Li = mL'\k, Li — aLn

w b

HH|l 2

T c 2

C,

r- / _ C™
C2 —jr

Llk r _^2fe,

Ci-a'Gh, Ct-mC'v,,

L>\ —
JF'

L'lk=[rL lk]
=

1

o f. c r,. f,

(/l-/o)^ r _ g
,

t/o/i '
jL2fe

"47r(/1 -/ )'

Clk
*T<Jl-f )R'

cikz={rC2k]=
vurk'

we[w 2 ]
=

-f:

L r/o/i J w\ /il/ L /o/i J

b
=L /o/i J-«v

1+
AftJ~L i/o/i -r

e

/{» =
/o/i
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IV. General Band Pass Wave-Filters of Ladder Type

Six Element Structures

U L',

-1

IV,

-—nrop-||——

;

i

u k \i'

Li = niiL\k, Li= aL\k,

Ci=—

,

L-2 — -r- ,

ra 2 o

L2 = cLife,
T
,_Lik

U—j-,

C[ = cCik-

f,» f,

2?

r(/t-/i)'

h-h
iTTflflR'

'2 »

(h-h)R
4ir/i/s '

1

r(f2-fi)R'

1-

Wl = .A

""^HiS 1- /*
2

2
2+A

1-

a =
(l-«ia

)/i?

6 =

6 =

(l-m2
2
)

hi

hi

nio =
z+mh

1- /i

(l-m 2
2
)/!/2 1-

4g (-!)•

4/* I
1

M/'

h4A/i/i

Af— types

:

w = mi = w2 =

fix

J2oq
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Band Pass Wave-Filters of Ladder Type

Three Element Structures

L

"TOT

Vi V- ==C<

, _ ^__, l 2=(4±A^. g-A^, Wlfc =.</«-/>>*
*Mf*-fd

ft-fi

Wi kicfifiR tyift

Ci = C\k =
torfiftR

VI. /!„=/!, /,»=«>.

c2
= /l

*Mf*-fi)R

TW
VI,

^OOCXP —

^

:c; VI, Log ==C

r r
2? r ,.._ 1

r /_ ^_ r _(f*-ft)R
-(/2-/1) * r(/i+/i)U ' »(/i+A)

C,= C2 — C2fe —
1/2-/1

4^* "" ~" tt(./-,-/,;/?

Four Element Structures

VII. " Constant &," /i„ = 0, /i*-*, & = #.

1
L\k =

R r ih~h)R
' L,2k= -

VII, = VIIi
L 2 k

o
°{oo

»(/l-/l)

1C^k—1— ^ _ /a~-/i r _
Clfe

-47r/1/2i?
, Lik

-'-K{f2-U)R

VIII. /2W2.

TTOT1-

VIII,
1 L

1 § i vill 2

o c

IT 1"2

Li

C
1

L_2=U 2

3H
, (1— mr) r

.Li = m xL\k,vLi =—j
-t- ife 1

Ci= , Ci = -
;,Cifc.

W-2 1 — W2"

4w a r r Lst
L.I — Z ^-,2£, -^2

.

1 — W2
2 W 2

r (I-Wi2
) ^, r _ w rCi =—j C2*, C2 — m\Lik.

Wi=-rW2 ,
w 2 =

\ l_ii»
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.Four Element Structures—(Continued)

IX. /i» = /x.

Same Structural Forms and L. C. Formulae as in Villi and VIII2.

m-\ =
i-iL

f 2
/2oo

^-1
h

W2= ~7"f»l.
/2

Five Element Structures

X. /,„ =0.

L, C
1

° ORRK5^—II-

X, L

oo
c o

X

L'2

Li = m\L\k, Lz = aL\k,

(1-ra,2
)

C-l— Clfe, 1^2 71 L.\k,
Ah

C'i=— C\k.
a

Xt

LV.

C\
L 2

==c

Ci — aC2k< Li — Lik,

L\——Lsk, Ci = miCik,
a

Ci = 3-7 Lik-
4//

/1/1 (i-wi2)M
HO-IX-i). --#+* °=^

XI. /2oo= oo.

XI,

o 6

L\ = L\k, Li =—Lik,

C: =
mi

r 4g r
\ — m-t

<-#-#)('-#)•

XI, r!

1

L

L'i

2 § ==c,

T
4g

7- r _ Lik

1 —m2
2 w2

Cj = -C2fc, C2 — C2fe,

,_uL =
d

*

/i/i 4/ii
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XII.

—

General Low-and-Band Pass Wave-Filters of Ladder Type

XII, Xll 2

m,L lk [
J^m^m z rL^ k

-nffltp-
L 2k Uk L 2 k

_||_eL lk |aL lk
i |cL lk _L_I|— ^-ll— A||— I^TL

Cik C lk
m

^_2P, k
eC 2k '2k

1 ' 91^2
m 2rC 2k—1=__

2k

T
R

Mk
t(/o-/i+/»)'

foC f,. F,
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r2 r2 „

(/o-/i+/2)
2i?

47T [(/o/l -/«/, +/1/2) (/0 "/I +/l) " foflM'

r _ (/0-/l+/2) 2

r 1

lfe
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2
* Trao-Zx+A)^'

-(/o-/1
4-/2)(i-i+i)-l,

/2»
f»l = 7-0-' W2=

(Wi+/i)/ii
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2
)/1lM-/o2

/1
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2
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1
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4gr/ /1

2/2
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2
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'

d = (/o-/i+/2) 2 [(l-m 1
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,/2l -fWffif, _fd
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APPENDIX III

Equivalent Networks and Transformation Formulae

Transformation A
Z,

r—VW aZ,

A/WV
dZ,

A/WV
bZ

1

L-AAW
cZ 2

^y\A/VJ

Equivalent when

& = a(l+a), c=(l+a) 2
,

d=l+a.

Transformation B

z

AAA/V
aZ,

VvV
v\
bZ

1

z 2-WW
dZ,

wvv
cZ 2

Equivalent when

6 =
1+a' Vl+aj ' <f =

1+a

Transformation C

z 2
LAAA/

aZ, bZ 2

AAA/V

cZ
1WW

eZ,

dZ 2

FZ 2

Equivalent when

N(M+N)
M+N-2b'

N(M-N)
N-M+2b'

M=l+a+b,

c=

e =

d =

! =

2bN
M+N-2b

2bN
N-M+2b

A^=V(l+fl+6) 2 -4a6.
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Transformation D

z,VW
aZ,

LA/VW
rAAAV-i

dZ 2

AAAAr

eZ,

AAAA^

Z 2

AA/W—

.

bZ 2WA—

'

fZ 2

A/VW

c =

e =

Equivalent when

(a-by j_ (a -by
(l+a)(l+ 6)

2

a

l+o
/=

(l+a) 2(l+6)

6

1+b

Transformation E

aZ,

AAAA/

AAAA/
Z,

bZ 2WW
cZ,

rAAAAq
dZ 2

-AAAAa

AAAV
Zo eZ,

rWW-i
fZ 2

AAW-
Equivalent when

c =

e =

(2b-M+N)(M+N)
4bN

'

(M+N-2b)(M-N)

d =

4bN f =

2b-Mj-N
2N

M+N- 2b

2N
M=l+a+b, N=V(l+a+ b)--±ab.

Transformation F

z,

rVW
z 2

AAAA^

aZ

bZ

eZ.

AAAA.

cZ,

A/VW fZ

dZ 2WWWW
c= 1+a,

Equivalent when
d=l+ b..

e =
a(l +g)(l+ 6)

2

(a-6) 2 / =
fr(l+q) a(l+&)

(g-6) 2 '


